Starter

9/29/2015

1. Classify the triangle by its sides and by measuring its angles.

obtuse isosceles triangle

Given $\overline{KL} \cong \overline{NL}$, $\overline{KM} \cong \overline{NM}$

Prove $\triangle KLM \cong \triangle NLM$

SOLUTION

SOLUTION	<u> </u>
STATEMENTS	REASONS
S 1. $\overline{KL} \cong \overline{NL}$	1. Given
S 2. $\overline{KM} \cong \overline{NM}$	2. Given
S 3. $\overline{LM} \cong \overline{LM}$	3. Reflexive Property of Congruence
4. $\triangle KLM \cong \triangle NLM$	4. SSS Congruence Theorem
X	•

Name that included angle between the pair of sides given.

- **1.** \overline{RU} and $\overline{UT} \angle RUT$ **2.** \overline{ST} and \overline{TR} $\angle STR$
- **3.** \overline{TR} and \overline{RS} $\angle TRS$ **4.** \overline{UT} and \overline{TR} $\angle UTR$
- **5.** \overline{SR} and $\overline{RT} \angle SRT$ **6.** \overline{RS} and $\overline{ST} \angle RST$

In the diagram, \overline{QS} and \overline{RP} pass through the center M of the circle. What can you conclude about $\triangle MRS$ and $\triangle MPO$?

SOLUTION

Because they are vertical angles, $\angle PMQ \cong \angle RMS$. All points on a circle are the same distance from the center, so \overline{MP} , \overline{MQ} , \overline{MR} , and \overline{MS} are all congruent.

So, $\triangle MRS$ and $\triangle MPQ$ are congruent by the SAS Congruence Theorem.

4 Ways to Prove Triangles Congruent

3) *aSa Postulate If 2 \angle s and the included side of one \triangle are \cong to 2 \angle s and the included side of another \triangle , then the \triangle s are \cong .

4 Ways to Prove Triangles Congruent

4) *aas Theorem If 2 Zs and the nonincluded side of one \triangle are \cong to 2 Zs and the nonincluded side of another \triangle , then the \triangle s are \cong .

Determine which triangle congruence theorem, if any, can be used to prove the triangles are congruent.

1.

2.

3.

4.

Homework Worksheet ASA and AAS methods